Rank-finiteness for modular categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classification of Modular Categories by Rank

The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

متن کامل

A Finiteness Property for Braided Fusion Categories

We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has property F if the associated braid group representations factor over a finite group, and suggest that categories of integral Frobenius-Perron dimension are precise...

متن کامل

FINITENESS OF MINIMAL MODULAR SYMBOLS FOR SLn

Let K/Q be a number field with ring of integers O . Let Γ ⊂ SLn(O) be a finite index subgroup, and let ν be the virtual cohomological dimension of Γ. That is, if Γ ⊂ Γ is any finite index torsion-free subgroup, then H (Γ,M) = 0 for i > ν and any ZΓ-module M . Let M be the free abelian group generated by the symbols [v1, . . . , vn], where the vi are nonzero points in K , modulo the following re...

متن کامل

On Finiteness Conjectures for Modular Quaternion Algebras

It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...

متن کامل

Finiteness Obstructions and Euler Characteristics of Categories

We introduce notions of finiteness obstruction, Euler characteristic, L2-Euler characteristic, and Möbius inversion for wide classes of categories. The finiteness obstruction of a category Γ of type (FP) is a class in the projective class group K0(RΓ); the Euler characteristic and L2-Euler characteristic are respectively its RΓ-rank and L2-rank. We also extend the second author’s K-theoretic Mö...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2015

ISSN: 0894-0347,1088-6834

DOI: 10.1090/jams/842